Multiple solutions of sublinear elliptic equations with small perturbations

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Entire solutions of sublinear elliptic equations in anisotropic media

We study the nonlinear elliptic problem −∆u = ρ(x)f(u) in R (N ≥ 3), lim|x|→∞ u(x) = l, where l ≥ 0 is a real number, ρ(x) is a nonnegative potential belonging to a certain Kato class, and f(u) has a sublinear growth. We distinguish the cases l > 0 and l = 0 and we prove existence and uniqueness results if the potential ρ(x) decays fast enough at infinity. Our arguments rely on comparison techn...

متن کامل

A Priori Estimates of Positive Solutions for Sublinear Elliptic Equations

In this paper, a priori estimates of positive solutions for sublinear elliptic equations are given in terms of thicknesses of domains. To this end, a supersolution is constructed by a composite function of a solution to an ordinary differential equation and a distance function. The results work efficiently in the case where the domain is an exterior or an interior of a convex set.

متن کامل

Multiple Nontrivial Solutions of Elliptic Semilinear Equations

We find multiple solutions for semilinear boundary value problems when the corresponding functional exhibits local splitting at zero.

متن کامل

Small Perturbation Solutions for Elliptic Equations

In this work we present a general regularity result for small perturbation solutions of elliptic equations. Our approach was motivated by the analysis of flat level sets in Ginzburg-Landau phase transitions models, which were considered in Savin (2003). When dealing with uniformly elliptic equations of the form (1), the classical approach to regularity is to differentiate the equation with resp...

متن کامل

Nonradial Blow-up Solutions of Sublinear Elliptic Equations with Gradient Term

Let f be a continuous and non-decreasing function such that f > 0 on (0,∞), f(0) = 0, sups≥1 f(s)/s < ∞ and let p be a non-negative continuous function. We study the existence and nonexistence of explosive solutions to the equation ∆u+ |∇u| = p(x)f(u) in Ω, where Ω is either a smooth bounded domain or Ω = RN . If Ω is bounded we prove that the above problem has never a blow-up boundary solution...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2013

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2012.09.045